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Abstract—Breast cancer has reached the highest inci-
dence rate worldwide among all malignancies since 2020.
Breast imaging plays a significant role in early diagnosis
and intervention to improve the outcome of breast can-
cer patients. In the past decade, deep learning has shown
remarkable progress in breast cancer imaging analysis,
holding great promise in interpreting the rich information
and complex context of breast imaging modalities. Consid-
ering the rapid improvement in deep learning technology
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and the increasing severity of breast cancer, it is critical
to summarize past progress and identify future challenges
to be addressed. This paper provides an extensive review
of deep learning-based breast cancer imaging research,
covering studies on mammograms, ultrasound, magnetic
resonance imaging, and digital pathology images over the
past decade. The major deep learning methods and appli-
cations on imaging-based screening, diagnosis, treatment
response prediction, and prognosis are elaborated and dis-
cussed. Drawn from the findings of this survey, we present
a comprehensive discussion of the challenges and po-
tential avenues for future research in deep learning-based
breast cancer imaging.

Index Terms—Breast cancer, medical image analysis,

deep learning.

REAST cancer has become the malignancy with the high-
B est incidence rate worldwide with estimated 2.3 million
new cases in 2020 [1]. Although the mortality rate has steadily
decreased since 1989 [2], breast cancer remains the fifth leading
cause of cancer mortality globally and the primary cause of
cancer mortality in women, with an increasing incidence rate in
most of the past four decades and an estimated 685,000 deaths
in 2020 [2], [3].

Breast cancer can be categorized into invasive cancer and
in situ cancer according to whether it spreads out or not, and
invasive cancer is further divided into four stages (i.e., I, II, III,
or IV) based on the spreading severity [4]. Recent statistics by
the American Cancer Society showed that breast cancer survival
varies significantly by stage at diagnosis. The 5-year survival
rates of USA patients diagnosed during 2012-2018 were >99%
for stage I, 93% for stage I1, 75% for stage III, and 29% for stage
IV [2]. Early detection and efficient systemic therapies are es-
sential in reducing the mortality rate of breast cancer [1]. Breast
imaging, including mammography, ultrasonography, magnetic
resonance imaging, and pathology imaging, has played a crucial
role in providing both macroscopic and microscopic investiga-
tions of breast cancer to guide treatment decisions.

Mammography, first performed in 1913, has been proven able
to reduce breast cancer mortality rates after long-term follow-
up [5]. Mammography uses low-energy X-rays to examine the
breast, often by projecting the tissues into a 2D image. Orga-
nized population-based mammography screening for women is
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recommended by The World Health Organization [6], which can
provide early diagnosis and improve the prognosis for potential
patients [7]. Apart from screening, mammograms are also used
to diagnose abnormalities such as masses, calcifications, archi-
tecture distortions, or area asymmetries. Due to the superposition
nature of 2D mammograms, different views of a breast could be
needed for richer information. Standard mammography views
are the craniocaudal (CC) view and the mediolateral oblique
(MLO) view for both breasts, which are taken directly from
the above and from an angled side of the breast, respectively.
Extra views might also be generated depending on practical
needs. Digital breast tomosynthesis (DBT), also regarded as
3D mammography, has been introduced to provide more spatial
context for detailed examination of the breasts and is emerging
as the standard of breast imaging care [8].

Ultrasound imaging (sonography) uses high-frequency sound
waves to view inside the body without any ionizing radiation.
Since the early attempts in describing the acoustic characteristics
of breast tumors [9], ultrasonic imaging has undergone a series
of transformations, both in instrument design and in clinical
applications. Over the past few decades, the quality of ultrasound
images has been largely improved by advances in transducer
design, electronics, computers, and signals. Sonography thus
has become a major mode of imaging for the diagnosis of breast
cancer in clinical practice [10]. Currently, breast ultrasound
is widely used to distinguish cysts and solid nodules with a
high specificity [11] and classify solid masses as benign or
malignant when combined with mammography [12]. It has also
shown usefulness in screening and detecting early-stage breast
cancers [13], and is recommended for Asian women with dense
breasts [14]. Due to its ease of use and real-time imaging capa-
bility, breast ultrasound has become popular in guiding breast
biopsies and other interventional procedures. B-mode is the most
common form of ultrasonic imaging for the breasts. Compound
imaging and harmonic imaging are also increasingly applied
to visualize breast lesions and reduce image artifacts. Moreover,
there is growing interest in applying Colored Doppler ultrasound
and contrast agents for measuring tumor blood flow and imaging
tumor vascularity [15].

Breast magnetic resonance imaging (MRI) [16] takes advan-
tage of radio waves and magnetic fields to generate more detailed
information, which is often a 3D picture of the inside of the
breasts. Since the invention of MRI in 1971, multiple clinical
assessments have witnessed the versatility and effectiveness
of breast MRI. Breast MRI has the highest sensitivity among
radiological imaging techniques for breast cancer detection [16],
and it is widely used as an auxiliary tool for breast-related
lesion diagnosis and prognosis. Nowadays, MRI examinations
are becoming the main scanning modalities for monitoring
the cycle treatment response and recurrence, offering more
details of the breasts without introducing ionizing radiations.
Considering that the breast anatomy contains different types of
tissues, fat suppression technique [17] has been introduced to
suppress the signal from adipose tissue as an auxiliary step.
To provide different visible foci, multiple types of sequences
could be generated [18], such as T1-weighted, T2-weighted,
and Diffusion-weighted MRI. Moreover, Dynamic Contrast
Enhanced (DCE)-MRI has become the main clinical and

research sequence, which could provide additional information
by observing the T1 changes over multiple phases after injection
of the contrast agent [19]. Abbreviated breast MRI which uses
single early phase DCE has been introduced as a shortened
examination approach for screening breast cancers [20].

Breast pathology provides a microscopic investigation of
cancers in an invasive way. In clinical practice, microscopic
analysis by pathology imaging is also regarded as the gold
standard for the final determination of breast cancer. A sample
of the patient’s breast tissue would be taken by pathologists and
placed onto a microscope slide. Then, specific stains and dyes
are used to identify cancer cells and confirm the presence of
chemical receptors. The most common stain for breast tissue
specimens is the hematoxylin-eosin stain (H&E stain) [21],
which has been used for more than a century and is still the
standard process for histopathological diagnosis [22]. More-
over, auxiliary techniques are often required to complete the
diagnosis, such as immunohistochemistry (IHC) [23] and in situ
hybridization (ISH) [24]. In the routine clinical pathology, the
predictive and prognostic biomarkers estrogen receptor « (ER),
progesterone receptor (PgR), human epidermal growth factor
receptor 2 (HER2), and the proliferation-associated nuclear
protein Ki67 are analyzed by IHC [25]. HER2 gene amplification
can be further verified by ISH analysis [24].

The breast imaging-reporting and data system (BI-RADS)
was proposed to categorize the overall assessment of the ra-
diological imaging findings [26]: BI-RADS 0 refers to an in-
complete examination; BI-RADS 1 refers to negative findings;
BI-RADS 2 refers to benign findings; BI-RADS 3 refers to likely
benign findings with <2% chance of malignancy; BI-RADS 4
has three sub-categories, 4a, 4b, and 4c, which refer to suspicious
findings with 2%-10%, 10%-50%, and 50%-95% likelihood
of malignancy, respectively; BI-RADS 5 refers to suspicious
findings with >95% likelihood of malignancy; and BI-RADS
6 refers to pathology-proven malignancy. The radiological find-
ings can only be used as a reference for suspicion of malig-
nancy. Usually, patients with BI-RADS 4 or above would be
recommended for a biopsy examination to determine the status
of malignancy in a microscopic view.

The description of breast cancer requires interpretation of
the complex and rich clinical information provided by breast
imaging from the macroscopic level to the microscopic level.
With the fast increase in medical data scale and the devel-
opment of imaging technology, analyzing large-scale high-
dimensional breast images with artificial intelligence (AI) holds
great promise in improving the accuracy and efficiency of clin-
ical procedures. Current Al is typically represented by deep
learning (DL), which has made remarkable achievements over
the past decade and has been widely adopted in various fields
such as image or speech recognition [27]. Compared with
conventional computer-aided diagnosis techniques that rely on
hand-engineered features, deep learning models show great
efficacy in extracting representations from high-dimensional
data (e.g., images), and the performance of deep models is
often better with more training data. Thus far, deep learning
has also been widely studied for analyzing medical images [28]
and demonstrated high performance in various fields [29]. With
the convergence of Al and human performance, deep learning

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on February 06,2025 at 21:09:10 UTC from IEEE Xplore. Restrictions apply.



132

IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 18, 2025

Mammogram

i "3 Pathology

Fig. 1.

Low Risk Score
High Risk Score

S oo
i 2
» S 40}
,,J‘i A
j
20
o
) Time
Screening Prognosis
L)
Ql.emotherapy

Good Response

#~T o
Surgery i o &
e

L 4

I

adiotherapy

®

Poor Response

Diagnosis

Treatment Response Prediction

Overview of deep learning in breast cancer imaging. Typical imaging techniques include mammograms, ultrasound, magnetic resonance

imaging (MRI), and pathology images. Deep learning is often used for screening, diagnosis, treatment response prediction, and prognosis.

I Screening and diagnosis
801 Treatment Response Prediction
I Prognosis

60
40

20+

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Fig. 2. Number of representative papers on deep learning for breast
cancer imaging published from 2012 to 2022.

nowadays is also reshaping cancer research and personalized
clinical care.

As shown in Fig. 2, deep learning-based breast imaging has
had a prosperous development in the past decade. However, an
extensive survey on deep learning-based breast cancer analysis is
yet absent to narrate the progress in various imaging modalities
over the past decade. Therefore, the main goal of this paper
is to review the development of deep learning in breast cancer
imaging, identify the challenges yet to be addressed in this field,
and highlight potential solutions to these challenges. Specifi-
cally, this survey includes applications from screening, diagno-
sis, and treatment response prediction to prognosis, covering
imaging modalities from mammography, ultrasound, and MRI,
to pathology images, as shown in Fig. 1. Compared with previous
surveys that focus on one or two specific modalities [30], [31],
[32], [33], [34], this work provides a more comprehensive sum-
mary of the advances in this field. In total 366 papers from 2012
to 2022 were surveyed, covering a wide variety of applications
of deep learning in breast cancer imaging.

The remainder of this work is structured as follows: In Sec-
tion II, we introduce the major deep learning techniques used

in breast cancer image analysis. In Section III, we elaborate in
detail on the applications of deep learning in breast cancer image
analysis in four aspects: screening, diagnosis, treatment response
prediction, and prognosis. In Section IV, we discuss the major
challenges facing the field and highlight the future perspectives
that hold promise in advancing the field. Finally, we conclude
this survey in Section V. We also summarize publicly available
datasets and provide a more detailed table of surveyed papers in
the Supplementary Materials for interested readers.

[I. DEEP LEARNING METHODS FOR BREAST CANCER
ANALYSIS

This section will introduce the major deep learning techniques
used in breast cancer imaging. For a more detailed review of deep
learning, we refer the readers to [35]. We will first introduce the
formulations and some majorly used deep learning models by
categorizing breast cancer image analysis into three basic tasks,
i.e., classification, detection, and segmentation, according to the
output types, and a brief illustration of the deep learning models
commonly utilized in each task can be found in Fig. 3. We will
then introduce the widely applied deep learning paradigms, in-
cluding supervised learning, semi-supervised learning, weakly-
supervised learning, unsupervised learning, transfer learning,
and multimodal learning.

A. Classification

Classification aims to give discrete predictions to categorize
the whole inputs, e.g., 1 to indicate that a breast image contains
cancer and O to indicate that the image does not contain cancer.
A classification model can be regarded as a mapping function
f:X — Y, where X is the domain of images or features and
Y € R is usually a one-hot representation of the disease exis-
tence. Formally, given x an input, y the target output, and y the
model output, the classification models are typically optimized
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Brief illustration of deep learning models, taking mammogram as an example. (a) A typical classification network that uses convolutional

and pooling to downsample the image while expanding the channels of features. The final feature maps will be pooled into a feature vector, and
often a fully-connected layer can be used to conduct the classification based on the feature vector. Typical feature maps extracted by a ResNet-18
pre-trained on ImageNet from layers 1, 7, and 17 are shown in (b)—(d), respectively. (e) A typical detection network. The downsampling workflow
often follows the classification network. Then, the feature maps are upsampled, the multi-scale features are fed into a region proposal network (RPN)
for region proposal generation, and a region-wise classification is performed to determine the final output. (f) A typical segmentation network. The
downsampling workflow could follow the classification network. Then, the feature maps are upsampled several times and concatenated with the
shallow-layer features. The final results are obtained based on pixel-wise classification on the largest feature map. All the models are optimized with

backpropagation [38].

by minimizing the cross entropy between ¢ and y:

L = —ylogy (D

To model f, earlier studies would utilize artificial neural net-
works (ANNGs) [36], [37], [38] that are constructed by several
fully-connected layers and take as input hand-crafted features.
Convolutional neural network (CNN) [39] gets rid of feature
engineering and makes the classification problem on images
fully end-to-end. In 2012, the success of AlexNet [40], a 5-layer
CNN powered by graphic processing unit (GPU), kicked off the
era of deep learning with its outstripping performance on the
ImageNet challenge [41]. VGG [42] extended the depth of CNNs
with smaller kernels and auxiliary losses. Residual networks
(ResNet) [43] further deepened CNNs to hundreds of layers
and conquered the gradient vanishing problem with skip con-
nections. Apart from AlexNet, VGG, and ResNet, many other
networks like Densely Connected Network (DenseNet) [44] and
the Inception series [45], [46] have all been widely used in breast
cancer imaging. Recently, vision transformer [47], a type of
deep neural networks that are mostly based on attention mech-
anism [48], has also shown great potential in image processing.
It is worth mentioning that classification models are often used

as a feature extractor for other tasks which will be introduced in
the following sections.

B. Detection

Detection aims to predict region-wise classification results,
e.g., drawing a bounding box for a recognized malignancy.
Reusing f: X — Y as the mapping function of a detection
model, X remains the domain of images, while Y is a set of
{(b,y)} with b the region and y the corresponding class for that
region. Note that {(b, y)} could be an empty set if there are no
regions of interest (ROIs) on the image. The most commonly
used formulation of b is a quadruple {u, v, w, h}, where u and
v represent the center of a object box, and w and h represent
the weight and height, respectively. The detection objective
is often formalized as sibling tasks containing a region-wise
classification loss L.}s and a bounding box regression loss Lj,.:

L=Lgs+ )Lﬁlom (2)
where L5 is commonly formed as a cross entropy loss, X is a
loss balancing hyper-parameter, and L), is often formalized as
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a smooth L1 loss as follows:

N2 7 .
o {O.5><A(t 7, il -1l <1; )

|t —t| — 0.5, otherwise,
where t is the model prediction, ¢ is the transformed location
representation based on b for regularized regression [49], and
| - | represents L1-norm. There are also other choices for L5
(e.g., focal loss [50]) and Ly, (e.g., the intersection over union
loss [51]).

Object detection models often leverage well-trained classifi-
cation networks as feature extractors. To conduct region-wise
prediction on the extracted feature maps, a considerable number
of deep learning architectures have been proposed, and some
of the frequently used models in breast cancer imaging are
covered here. Fast R-CNN [52] extracts and pools the proposals
(i.e., the candidate object features) from a pre-trained CNN
and conducts the sibling localization and classification tasks.
Faster R-CNN [53] introduces the concept of anchors with
region proposal network (RPN), which boosts the speed of
detection with reference boxes on the feature maps. Apart from
the mentioned two-stage methods that extract proposals and then
conduct classification and regression, one-stage detectors have
been proposed to further accelerate the inference speed, with
classical representatives such as the YOLO series [54], [55] and
RetinaNet [50].

C. Segmentation

Segmentation aims to give pixel-wise classification predic-
tions, and the contour of objects can then be delineated. Tak-
ing the segmentation task on 2D images as an example, the
input domain is X € R">#*¢ and the output domain is Y €
RWXHXN “where W, H, C, N represents the width, height,
channel, and the number of classes, respectively. Typical ob-
jectives for medical image segmentation are pixel-wise cross
entropy loss and the Dice loss [56]:

2% 300, yidli e
Zf\i1 yi + sz\i1 97 + ¢
where M is the total number of pixels, y; is the ¢-th pixel target,
7; is the ¢-th pixel prediction, and € is a hyper-parameter for
numerical stability. The target y here is also called the mask of
the image.

Segmentation models for medical imaging typically follow
an encoder-decoder structure that first downsamples (e.g., via
convolution and pooling) the input image into features and
then upsamples (e.g., via deconvolution and interpolation) the
features to pixel-wise predictions. FCN [57] first introduced
deconvolution to a VGG classifier for image segmentation.
U-Net [58] expanded the upsampling process to multiple levels
of interpolation and further introduced skip connections between
the encoder and decoder paths to enrich details. Later on, U-Net
and its variants [59] have almost dominated the field of medical
image segmentation. Further, to separate overlapped instances
that belong to the same class, Mask-RCNN [60] is often adopted,
which first detects object proposals on the images and then
performs segmentation for each detected object.

L=1-

“

D. Deep Learning Paradigms

There are diverse options of deep learning paradigms to apply
the models to different scenarios, given the availability of the
data and labels.

Supervised learning requires all training samples to be labeled
exactly in the form of targeted outputs, e.g., masks for the
segmentation task or bounding boxes for the detection task.
Supervised learning is the most common form of deep learning,
and a large proportion of studies reviewed in this paper fall into
this category. However, deep learning is notoriously data-hungry
and labeling medical images is time-consuming, and expertise-
depending. Hence, supervised learning may not be the optimal
solution for many practical medical image analysis scenarios.

Weakly-supervised learning (WSL) is applied when the given
label is not in the format of the targeted output. For example,
using image-level annotations for detection or segmentation. In
breast cancer imaging, the most used weakly-supervised learn-
ing methods are class activation map (CAM) [61] and multiple
instance learning (MIL) [62]. CAM is often used for rough detec-
tion of targeted lesions, which is computed as the feature maps
weighted by corresponding gradients. Higher values on a CAM
indicate the regions that contribute more to the final prediction.
MIL treats an input image as a bag of instances (i.e., image
patches) which is negative only when all instances are negative.
The goal of MIL is often to develop a bag-level classifier, which
is quite a common strategy in processing whole slide pathology
images which are of giga-pixel scale. Like CAM, MIL can also
be used to roughly localize the lesions by highlighting the most
contributed instances.

Semi-supervised learning (SSL) can be regarded as another
type of WSL, which enables utilizing a large amount of un-
labeled data together with limited labeled data. Typical SSL
methods are based on graph, entropy minimization, pseudo la-
beling, generative modeling, or consistency learning. Recently,
consistency-based approaches have shown great success in SSL,
which inject a regularization on the model that the predictions
on different perturbated versions of a model should remain
consistent.

Unsupervised learning leverages unlabeled data for model
training, often aiming at clustering or dimension reduction. In
the literature of deep learning-based breast cancer image analy-
sis, two major directions in unsupervised learning have gained
research attention: generative modeling and self-supervised
learning. The former uses generative methods, such as the
generative adversarial network (GAN) [63], to model the data
distribution and generate new samples, which is also quite often
used in SSL. Self-supervised learning trains a neural network
on the unlabeled images to learn representations for the su-
pervised downstream tasks [64]. Self-supervised learning has
shown remarkable strength in reducing the requirement of large
amounts of downstream labeled data, which holds great promise
in medical image analysis.

Transfer learning aims to transfer the knowledge learned
on a source domain to the target domain, which is especially
useful when a target domain does not possess too much data.
A common transfer learning strategy in medical imaging is
pre-training the networks on large-scale natural image datasets,
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such as the ImageNet [40]. Recently, domain adaptation [65]
and domain generalization [66] have also gained huge attention,
which mitigates the gaps between the source domain and the
target domain.

Multimodal learning aims to process and summarize infor-
mation from different views/modalities of a subject. Taking the
examination process of breast cancer as an example, multimodal
data from mammogram, ultrasound, MRI to pathology images
could be generated and utilized together. Multimodal data could
provide rich and complementary information from macroscope
to microscope. Itis worth mentioning that multimodal data could
also be yielded with a single type of imaging technique, such as
multi-view mammograms or multi-sequence MRIs. Typically in
breast imaging, multimodal learning focuses on the information
fusing strategies, which mainly include early fusion (i.e., fuse
data at the input level), joint fusion (i.e., fuse at the feature level),
and late fusion (i.e., fuse at the decision level).

[Il. DEEP LEARNING APPLICATIONS IN BREAST CANCER

We here provide a concise review of deep learning-based
applications in breast cancer imaging. One may refer to the
supplementary where we also provide detailed lists of studies
surveyed by us.

A. Screening and Diagnosis

Screening aims to find patients out of the examined cohort,
and diagnosis aims to give a more precise description of the
patients’ status. Screening is often based on population-scale
mammograms, and diagnosis often uses other imaging modal-
ities. However, there is no clear demarcation between the two
tasks in the context of deep learning, as a large number of studies
focus on determining malignancies from normal or benign sub-
jects. We hence introduce the deep learning-based breast cancer
screening and diagnosis in a combined section.

1) Mammogram-Based Screening and Diagnosis: Clas-
sification: As a routine breast cancer screening approach,
mammograms are often studied for binary classification (e.g.,
malignant vs benign/normal/non-malignant) or three-class clas-
sification (e.g., malignant vs benign vs normal). Studies also
tried to distinguish different types of lesions such as mass or
architectural distortion, the levels of breast density, or the levels
of cancer risks.

The early studies relied on hand-crafted features as inputs to
ANNs [67], [68]. With their remarkable success in analyzing
natural images [40], CNNs were also used as a powerful feature
extractor combined with other machine learning classifiers like
Support Vector Machine (SVM) and Random Forest [69].

As medical data are often limited in scale, some works [70],
[71] transferred existing networks with pre-trained weights from
the ImageNet to the mammogram datasets. A comparative study
on mammogram classification performance of different net-
works was reported in [72]. A comparison of the efficiency of
mammogram-based classification (using 2D VGG) and DBT-
based classification models (using 3D VGG) was reported by
Li et al. [73]. Apart from directly using on-the-shelf models,
studies further sought more effective transfer learning methods

to improve the pre-training learning process and fully utilize the
learned knowledge from the pre-training dataset [74]. A com-
parative study on the pre-training strategies has been reported
by Clancy et al. [75]. To enlarge the training data and learn
more robust models, data augmentation and model ensemble
have been widely used [76]. Several works also attempted to
use generative models to enlarge the scale of training data [77].

Multiple instance learning (MIL) has played an important
role in mammogram-based classification, as the lesions are
often sparse [78]. A line of works focused on developing MIL
classifiers with different aggregation strategies to summarize
the final feature maps of a CNN model [78], [79]. Moreover,
Lotter et al. [80] enabled the training of a RetinaNet detector [50]
with both bounding box annotations and image-level supervision
using the MIL strategy. For 3D DBT classification, some works
utilized a 2D classifier to obtain results for each slice and fused
the results with MIL for final 3D prediction [81].

A large proportion of studies proposed learning patient-level
prediction from multiple input images. On the one hand, mul-
tiple views (e.g., the bilateral craniocaudal (CC), mediolateral
oblique (MLO) views, etc.) are often generated for more detailed
examination. Different multi-view feature fusion methods have
thus been proposed [82], [83], mostly focusing on developing
feature extractors to generate more semantically meaningful
representations or fusing strategies to inference final results
based on the heterogeneous features. On the other hand, studies
also attempted to combine the information of the previously
screened image (i.e., prior mammogram) and the currently
examined image (i.e., current mammogram) for malignancy
classification [84]. In particular, Baccouche et al. [85] proposed
using GAN to generate a prior image from current mammograms
and combining the two images for lesion detection.

Multi-task learning has also been studied to enhance classifi-
cation performance with extra supervision from other tasks [86].
Notably, multi-task learning and multi-view inputs can both
enrich the information provided to the model, and these two
strategies can be simultaneously incorporated [87].

Detection: Lesion detection could specify the location and
type of the tumors and further quantify cancer development.

Two-stage cancer detection pipeline was widely used, where
hand-crafted [88] or network-segmented [89] lesion candidates
are fed into a classification network for false positive reduction.
Studies also adopted and modified off-the-shelf end-to-end de-
tectors, such as Faster-RCNN [52] and YOLO [54], which take
as input the whole mammography image and output bounding
box coordinates for lesions with scores indicating the likelihoods
of different lesion types [90]. Lietal. [91] also proposed a cancer
detection method for 3D DBT by aggregating the 2D predictions
into 3D results.

Multi-view methods are also frequently studied for breast le-
sion detection. Based on the same feature extractor backbone for
each view, Liu et al. [92] compared and fused the features from
different views to improve the detection performance on top of
Mask-RCNN [60]. Graph-based reasoning was also integrated
into the multi-view detection framework with graph nodes gen-
erated by pseudo landmarks [93]. Recently, transformer-based
detector was also used for multi-view mass detection [94]. On
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the other hand, Yang et al. [95] proposed to fuse the features of
different networks, where each network is designed for a specific
view.

It is also noteworthy that the feature maps extracted from a
classification network can also be used to localize the lesions
by CAM or the attention mechanism in a weakly supervised
manner. However, quantitative evaluations are often lacking
for these studies, and the attention maps are often used for
qualitative interpretation purpose [78], [79]. A recent study also
proposed utilizing intermediate features and CAM as pseudo
labels to train a detection model [96].

Segmentation: Segmentation provides contour delineation for
a more detailed description of the lesion, which often requires a
considerable amount of pixel-wise annotations by experienced
radiologists for model training.

There are a few studies on mass segmentation from mammo-
grams, based on modified structures or losses with FCN [97],
conditional GAN [98], [99], or U-Net-alike structures [100].
A comparative study on different segmentation models was
conducted in [101].

Multiple Tasks: Some studies tried to integrate modules for
different tasks to establish multi-functional computer-aided di-
agnosis (CAD) frameworks.

A straightforward way to a multi-task CAD system is training
a set of task-specific models [102], where the studies are often
based on existing solutions for each task. Object detection net-
works, such as Faster R-CNN, Mask R-CNN and YOLO, have
also been adopted to conduct both classification and detection
due to their multi-task learning nature [85], [103]. As mentioned,
classification models could be used to extract detection results
in a weakly-supervised manner as well [104], [105]. Moreover,
unified multi-task models have been proposed in the literature,
e.g., combining classification with detection [106] or segmenta-
tion [107].

Other Tasks: Many studies aim for more than developing
specific methods for the aforementioned basic tasks.

A comparative study of mammogram classification perfor-
mance between a deep learning model and 101 radiologists has
been reported by [108], where the model showed comparable
performance to the average of radiologists. Later on, a handful
of studies have shown that deep learning models could help im-
prove the radiologists’ performance [109], [110], [111]. Recent
study also reported that deep learning surpassed the performance
of traditional risk prediction algorithms [112]. Moreover, deep
models have been demonstrated capable of screening mammo-
grams based on large or even international populations [113],
[114] and finding out high-risk subjects for further examination
by radiologists [115].

Despite achieving expert-comparable or expert-surpassed ac-
curacy, recent studies reported significant performance drop
when applying deep learning models to external testing mam-
mograms [116], [117]. An increasing number of works at-
tempted to improve the robustness of deep learning models for
mammograms in the aspects of noisy label [118], adversarial
attacks [119], external domain generalization [120], and privacy
preserving under federated learning [121]. Efforts have also been
devoted to make the models more interpretable [122].

To reduce potential side effects caused by extra imaging
process, recent studies also made efforts on mammograms syn-
thesis [123].

2) Ultrasound-Based Diagnosis: Classification: Breast
ultrasound (US) images are often used for malignant lesion
identification, lymph node metastasis estimation, or breast risk
prediction, as an appealing non-invasive alternative to tradi-
tional invasive approaches. Similar to the studies on mammo-
grams, well-validated classification networks like VGG, ResNet,
DenseNet, etc., have also been widely adopted in breast ultra-
sound classification. Some studies cropped suspicious lesions in
US images as the regions of interest (ROIs), which were later
fed into the CNNs for malignancy classification [124], [125] and
metastasis estimation [126], [127], [128]. However, a prominent
drawback of ROI-based analysis is that lesion regions should
be manually cropped in advance, which not only increases the
annotation burden of the experts but also impedes the flexi-
bility of these methods in real-world applications. Instead of
using manual crops, Lee et al. [129] first leveraged a Mask
R-CNN model to detect and segment lesions and then used a
DenseNet121 model for auxiliary lymph node metastasis status
prediction based on the extracted peritumoral tissues. On the
other hand, researchers also attempted to analyze the whole US
image without lesion candidate detection in the first place [130],
[131], [132]. It is worth noting that with transfer learning and
data augmentation techniques, the whole US image-based works
can achieve comparable performance to the studies based on
carefully extracted ROIs.

In clinical routine practice, radiologists normally make di-
agnostic decisions based on a comprehensive evaluation of
US images in different views and a combination of different
modalities such as B-mode, color Doppler, and elastography
images. Therefore, studies have also attempted to fuse the
complementary information from multi-view or multimodal US
images, where feature-level fusion [131], [133] and output-level
(predicted probability for each view) fusion [134] have both been
explored.

To alleviate the overfitting problem resulting from data defi-
ciency in training, researchers applied various strategies, such as
using ImageNet pre-trained models, data augmentation [135],
or transfer learning from other related tasks [136]. Moreover,
GANSs have also been used for generating synthetic data as a
surrogate of data augmentation, which demonstrated excellent
performance in the task of classification [137].

To efficiently leverage limited annotated data and a large
amount of unlabeled data for training, unsupervised learn-
ing [138] and semi-supervised learning techniques [139]
were also explored to enhance the discrimination capability
of the model, based on techniques like autoencoder, Mean
Teacher [140], and Virtual Adversarial Training (VAT) [141].

Detection: Detection of lesions is also clinically preferable
for breast US diagnosis. Many studies used CNNs for candidate
classification and false positive reduction after a lesion candidate
extraction process [142], [143], [144]. A comparative study on
a variety of state-of-the-art detection networks such as Faster
R-CNN and YOLO, and classification networks such as AlexNet
and DenseNet were systematically reported in [145]. To further
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incorporate the large amount of data annotated at the image level,
Shin et al. [146] proposed a joint weakly- and semi-supervised
network based on the multi-instance learning scheme.

Segmentation: Segmentation of important ROIs from US
images, such as the tumor region, major functional tissues,
and breast anatomic layers, aims to provide more fine-grained
and quantitative information to clinicians. Automated object
segmentation from ultrasound images is quite challenging owing
to speckle artifacts, low contrast, shadows, blurry boundaries,
and the variance in object shapes. Recently, deep learning-based
approaches, particularly FCN and U-Net, have been successfully
applied to this field [147], [148].

To enhance the confidence of the hardly-predicted boundary,
a number of strategies were designed in previous works [149],
[150], [151]. For instance, Xue et al. [150] developed a breast
lesion boundary detection module in shallow CNN layers to
embed additional boundary maps of breast lesions for obtaining
the segmentation result with high-quality boundaries. Other
boundary-aware modules were also proposed to achieve more
precise segmentation in the confusing and ambiguous boundary
areas [149], [151].

Different variants of attention mechanisms were used in con-
junction with the deep learning model for US segmentation, such
as paying spatial attention to most specific regions in the US
images and weighting the feature channels that have different
semantic information [152]. In addition, saliency maps that
highlight visually salient regions or objects were also explored
to strengthen the network’s attention to the region of interest in
US mages and help to boost the segmentation performance of
the model [149].

Similar to the classification studies, GANs were widely ap-
plied to synthesize training data to augment the training set for
improving the segmentation results [147], [153].

Multiple Tasks: A complete CAD system often requires mul-
tiple functions, such as lesion detection and classification [134],
[145], [146] or lesion segmentation and classification [154],
either in a manner of sequential modeling or multi-task learning.
Some accomplished such goal in two steps, i.e., first detecting or
segmenting the lesion regions, and then classifying the detected
or segmented areas into benign or malignant classes [129],
[134], [146]. By contrast, there were also methods proposed to
conduct multiple tasks simultaneously in an integrated frame-
work [155]. For instance, Zhou et al. [155] proposed a multi-task
learning framework for joint segmentation and classification
of tumors in 3D automated breast ultrasound images. It is
composed of two sub-networks: an encoder-decoder network
for segmentation and a lightweight multi-scale network for
classification.

Weakly-supervised segmentation has also been explored in
breast US [156], where CAM-based methods were often applied
in a post-hoc manner to highlight the most discriminative regions
discovered by the model.

Other Tasks: Some studies explored novel modalities other
than conventional US images, such as the contrast-enhanced
ultrasound videos [157] and automated whole breast ultrasound
images [143], [144], [155],[158], [159], for lesion classification,
detection, and segmentation, where 3D CNNs were often built

to leverage the rich temporal or spatial information for more
robust learning [143], [157].

Observer study by radiologists is quite important to vali-
date the potential of DL methods in real-world applications.
There are also many works demonstrating that the deep learning
approaches have achieved expert-level performance, showing
promise in commercial applications [133].

To improve model robustness against noise, Cao et al. [160]
built a noise filter network to prevent classification models from
overfitting the noisy labels. Zou et al. [161] developed an end-
to-end noisy annotation tolerance network for robust US image
segmentation.

3) MRI-Based Diagnosis: As the most sensitive radiologi-
cal modality for breast cancer detection, MRI examinations are
applied to fine-grained diagnosis of breast cancer and provide
more detailed preoperative guidance for treatment planning. We
here generally categorize previous studies into classification,
segmentation, detection, and other tasks.

Classification: Classification of breast MRI could be catego-
rized from three perspectives according to their purpose: First,
the basic screening task by detecting the absence of lesions
which helps physicians to dismiss the normal MRI examinations.
Second, a binary classification distinguishing malignant tumors
from benign ones for follow-up treatment regimens occupies a
large part of research. Third, fine-grained classification like pre-
dicting molecular subtypes, BI-RADS, and metastasis also facil-
itates detailed and further diagnosis. Currently, a large propor-
tion of studies are based on DCE-MRI which takes several MR
images at different time points after injection of contrast agent.
Ultrafast MRI, which takes a short scan duration within several
seconds, has also gained large research interest as patients with
motion sensitivity and emergency situations could get accurate
radiology examinations from ultrafast MRI promptly and get
timely treatments. Moreover, learning from multi-parametric
MRI enables the fusion of more comprehensive information
from multiple modalities, which has also triggered exploration
and improvements.

Different deep learning architectures have been proposed
regarding the diverse MRI sequences. Compared with other
sequences, DCE-MRI further possesses temporal information
provided by the contrast agents. Long short-term memory
(LSTM)-based [162] or convolutional LSTM-based [163] net-
works were applied to exploit the temporal features involved
in DCE MRI sequences. To lower the computation cost of 3D
MRI, maximum intensity projection (MIP), which projects the
voxels throughout the volume onto a 2D image, has also been
applied in the DCE series [164], [165], [166]. For instance, from
a comparison study based on MIP and central slides of different
sequences, Antropova et al. [164] witnessed the effectiveness
and advantages of time and space-saving of MIP techniques.

Learning from the multi-parametric MRI combining multiple
sequences and integrating their corresponding advantages is
another research focus. For instance, Hu et al. [167] imple-
mented three different fusion strategies: image fusion of DCE
MIP and center slice of T2-weighted modality, feature fusion of
CNN-based deep features, or classifiers output fusion for two
training branches of modalities. It’s worth noting that feature
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fusion was found to perform significantly better in classifying
between benign and malignant lesions. Ren et al. [168] com-
pared five models based on different MRI modalities on the task
of axillary lymph node metastasis prediction, where the com-
bination of DCE + T2 inputs was found to perform best. Some
studies also combined deep features with hand-crafted radiomics
features [169] to improve the classification performance.

Apart from network architecture design, other techniques
have also been embedded in MRI-based CAD systems. Inspired
by transfer learning, using pre-trained networks [166], [170]
could solve the data shortage to some extent and speed up
the convergence. Also, ensemble learning frameworks [171],
[172] were introduced to reduce the model uncertainty. Rasti
et al. [172] designed multiple gating networks sharing the same
input and fused the outputs at last. Sun et al. [171] predicted
the molecular subtypes (luminal and non-luminal) based on the
ensemble outputs from three sub-models trained with different
post-contrast sequences.

Weakly-supervised and unsupervised learning have been
studied to tackle the scarcity of labels. Liu et al. [173] classified
the benign and malignant tumors from the whole slides instead of
the targeted region of interest with ResNet-based networks. Sun
et al. [174] utilized transfer learning strategies from the source
domain with unsupervised pre-training on DCE-MRI containing
benign and malignant cohorts for predicting molecular subtypes.

Detection: Compared with other modalities, studies on breast
MRI-based detection is of a relatively smaller scale. Dalmics
et al. [175] took the lesion candidate patch and its contralateral
patch as inputs for lesion classification. Maicas et al. [176] in-
corporated reinforcement learning-based Deep Q network [177]
with an attention mechanism for breast lesion detection, which
showed accurate localization while saving more inference time.
Ayatollahi et al. [178] modified a 3D RetinaNet for small breast
lesion detection on ultrafast DCE-MRI.

Segmentation: U-Net-based architectures [179], [180], [181]
are the most commonly used structures for breast tumor segmen-
tation. In addition, considering the temporal information and
physiological inheritance involved in the DCE-MRI, the Three
Time Points (3TP) approach was introduced to help quantize
the intensity change of the breasts before, during, and after
injection of the contrast agent. For example, Vidal et al. [180]
fused the outputs from independent U-Net branches segmenting
different series combinations such as 3TP series and full series.
Galli et al. [181] extracted the 3TP slices after breast masking
and motion correction for lesion segmentation. Moreover, some
work [182] conducted multi-stage coarse-to-fine segmentation.

Multiple Tasks: For a more complete CAD system, lots of
works implement the combination of tasks simultaneously. Stud-
ies [183], [184] implemented the segmentation and classification
tasks in one pipeline with sequential order for more diagnosis
analysis on the segmented lesions. Zhu et al. [183] utilized VNet
and Attention U-Net to segment lesions from DCE and DWI, and
ResNet was then used for benign and malignant classification
based on the segmentation outputs. Parekh et al. [184] utilized
stacked sparse autoencoder networks for segmentation of intrin-
sic tissue signatures, which was followed by an SVM classifier
for classification.

Some studies combined classification and weakly-supervised
detection [185], [186] to achieve a comprehensive diagnosis.
Zhou et al. [185] implemented the classification task on 3D
densely connected networks and localized the lesions with
Class Activation Map and conditional Random Dense Con-
ditional Random Field. Luo et al. [186] proposed Cosine
Margin Sigmoid Loss for learning cancer malignancy classi-
fication and Correlation Attention On-the-shelf models, such
as Faster R-CNN, were also used for ROI localization first
and combined with custom CNNs for lesion classification
[187].

Other Tasks: Breast density estimation by 3D CNN-based
regression [188] showed benefit in helping breast cancer risk
prediction. Predicting the biomarkers, such as Ki-67 status, can
help indicate the development of breast cancer. For example, Liu
et al. [189] fused the deep features based on transfer learning
CNN frameworks from multi-parametric MRI and predicted the
Ki-67 status with a multilayer perceptron classifier. Moreover,
to increase the accessibility of breast MRI, Chung et al. [190]
generated simulated multi-parametric MRI based on 3D fully
convolutional networks and validated its quality by comparing
it with real scans.

4) Digital Pathology Images-Based Diagnosis: Pathol-
ogy image-based diagnosis plays an irreplaceable role as the
“gold standard” in cancer characterization. Deep learning-based
breast pathology diagnosis has blackflourished in the past decade
along with an increasing number of publicly available datasets.
Here, we categorize the studies into classification, segmentation,
detection, and other tasks.

Classification: The cancer type/grade assignment is an es-
sential task in breast pathology image analysis. Conventional
methods for breast pathology classification are based on hand-
crafted features qualitatively designed by domain experts, such
as the spatial distribution, arrangement, and individual types
of discrete tissue elements or primitive shapes (e.g., nuclei,
lymphocytes, or glandular structures). In the past few years, deep
learning methods have been widely used to automate this process
for a higher accuracy [191]. In parallel with breakthroughs in
deep learning algorithms, the availability of large-scale datasets
has also been a critical factor for the success of deep learning
methods. One milestone is the CAMELYON16 dataset [192],
which contains 400 histopathology whole slide images (WSIs)
of lymph node sections. Wang et al. [193], the winner of
the CAMELYON16 challenge, adopted various DL models for
the patch-wise classification task. The patch-wise classification
results were further aggregated to obtain the geometrical and
morphological features of the whole slide image (WSI). Then
the embedded features were used to classify the WSIs into
metastasis or negative findings via a Random Forest classifier.
Following the success, many studies have been conducted to
improve the performance of patch-wise classification, including
the modification of model architectures [194], [195], the use
of different data preprocessing techniques [196], and atten-
tion mechanism [197]. A more recent challenge summarized
multiple solutions for quantitative tumor cellularity assessment
in breast cancer histology images following neoadjuvant treat-
ment [198].
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However, a major drawback of these studies is that the patch-
wise classification methods usually require extensive manual
annotation at the pixel/patch level by expert pathologists, which
is time-consuming and labor-intensive for WSIs that are of
gigapixel scales. For example, the CAMELYON16 dataset con-
sists of 270 WSIs at 40 x magnification, with roughly the same
number of pixels as the entire ImageNet dataset [41], which was
recognized as one of the largest datasets in the field of computer
vision. How to leverage coarsely annotated data (e.g., globally
labeled WSIs) to effectively train a well-performed model is
much more preferable as WSI-wise analysis is often the ultimate
goal of pathologists.

Thus, recent studies have been conducted to develop methods
that only require the WSI-level annotations, which are much
more convenient and cost-effective for real-world clinical patho-
logical practice. For example, Campanellaetal. [199] proposed a
deep learning method that only requires WSI-level annotations,
which formulates the WSI classification task as an example of
the multiple instance learning (MIL) problem. Typically, the
MIL-based deep learning method consists of two stages: in
the first stage, a deep neural network is used to extract the
features of the instances; in the second stage, the instance-level
features are aggregated to obtain the bag-level features that
are fed into a bag-level classifier to yield the final prediction
for bags. The follow-up studies tried to improve the MIL-
based WSI classification method by various strategies, including
enhancing the instance representation [200], [201], extracting
more discriminative features [199], [202], [203], and improving
the aggregation strategy [197], [204], [205]. How to improve
the information connection between the feature extractor and
the aggregator to obtain more discriminative whole-slide level
representation remains an open problem, not only for breast
pathology image analysis but also for all other DL studies based
on WSIs. Recent studies have made efforts with techniques such
as coupled iterative training [206] and end-to-end training with
huge hardware (GPU) support [207].

Detection: Mitosis detection is a representative research field
in pathology image analysis. The density of mitosis is used to
assess the cell proliferation activity, which is a key factor for
the prognosis of breast cancer [208]. Recent DL methods on
automatic mitosis detection can be divided into three categories:
1) object detection-based methods; 2) two-stage methods; and
3) pixel-wise segmentation methods. The object detection-based
methods [209] mainly employed popular detection frameworks
such as Mask R-CNN. The localization and classification of
mitosis were performed simultaneously. The second line of
methods consists of two stages. In the first stage, the mitosis can-
didates were detected by the object detection methods, including
Mask R-CNN [210], Mask R-CNN [211], RetinaNet [212],
etc. In the second stage, the mitosis candidates were classified
into mitosis or non-mitosis [210], [211], [213]. The follow-up
methods further improved the detection performance in various
aspects, including more representative features [210], network
architectures [211], [213], and training strategies [214], etc.
The third type of method achieve the mitosis detection task
via fine-grained segmentation, which will be introduced in the
following section.

Segmentation: According to the Nottingham Grading Sys-
tem [215], [216], the grading of breast cancer is based on
the assessment of three morphological features: 1) degree of
tubule or gland formation, 2) mitotic count, and 3) nuclear
pleomorphism. Thus, segmentation of glands and nuclei is a
fundamental yet crucial task in breast pathology image analysis.
For gland segmentation, existing DL-based methods typically
adopt U-Net and its variations [217]. One of the most popular
research foci is to explore the boundary information to boost the
segmentation performance [218].

In parallel with the progression of gland segmentation in
breast pathology, segmentation of nuclei has also been well
studied, which is used to extract the morphological features of
the nuclei, such as size, shape, and texture. The morphological
features of the nuclei assess the nuclear pleomorphism, which
can be used to predict the diagnosis and prognosis of breast
cancer [219]. In DL-based nuclei segmentation methods, the
main challenge is to obtain accurate segmentation results for
nuclei with complex shapes and overlapping. To address this
challenge, studies proposed to use multi-task learning [220],
[221], multi-scale learning [222], and adversarial learning [223].
Further, the other methods exploited information of the nuclear
contour within the training stage. The most straightforward way
is to simultaneously predict the contour and the segmentation
mask [224]. In this manner, the instance segmentation results
can be obtained by the post-processing of the contour and
the segmentation mask. The follow-up methods boosted the
performance in the aspects of pre-training [225], data augmenta-
tion [226], network architectures [227], and loss functions [228],
[229].

Another challenge of nuclei segmentation is the scarce manual
annotation. One WSI can contain tens of thousands of nuclei,
which makes the manual annotation of the nuclei segmentation
infeasible. To address this challenge, some studies aimed at
developing methods that only require weak annotations, such
as scribbles [230] or even point annotations [231], [232]. Based
on the size and shape assumptions of the nuclei, existing weakly-
supervised methods typically encode the morphological priors
into the weak annotations, transforming the weak annotations
into the coarse pixel-wise annotations, such as pseudo edge
maps [233]. Further, the following studies proposed various
techniques to eliminate the bias of the inaccurate and incomplete
coarse annotations, such as self-training [231], co-training [232],
and multi-task learning [233].

Other Tasks: Due to the significant variance of the staining and
the imaging conditions (e.g., slide preparation and microscope
scanning), the DL-based breast pathology image analysis meth-
ods could suffer from the domain shift problem. Domain shift
refers to the data heterogeneity between the source and the target
domains [234]. Existing methods for mitigating the domain
shift problem of pathology images can be divided into three
categories: 1) data augmentation, 2) domain adaptation, and 3)
domain generalization. Data augmentation is a common tech-
nique to enhance the robustness of the DL. models by increasing
the diversity of the training data. In breast pathology analysis, the
commonly used data augmentation methods is color distortion
on both the RGB channels [235] and the HSI (hematoxylin,
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eosin, and residual) channels [214]. For domain adaptation, the
most representative method is adversarial learning. For example,
some [223], [236] proposed to use the generative adversarial
networks to map the images from the source domain to the target
domain. The domain generalization methods aim at learning
domain-invariant features, which can be used to generalize the
models to unseen domains. The typical methods for domain
generalization in breast pathology are feature alignment [237]
and domain-invariant feature learning [238].

Recently, as one type of domain adaption, virtual staining
techniques have attracted large attention in breast pathology
analysis. For instance, immunohistochemical (IHC) staining
reflects protein expression, which is vital for diagnosing cancers,
histological classification, grading, staging, and prognosis of
tumors. However, the IHC staining procedure is costly, labo-
rious, and time-consuming. To complete the diagnosis, virtual
HER?2 THC staining methods [239] were proposed to transform
autofluorescence microscopic images of breast tissue sections
into bright-field equivalent microscopic images, matching the
HER?2 THC staining that is chemically performed on the same
tissue sections.

In addition, observer studies by pathologists are also a crucial
research issue in clinical practice. Several studies have shown
the significant effectiveness of deep learning models compared
to that of doctors and pathologists in various applications, such
as lymph node metastases detection [192] and pathology-based
diagnosis [240].

B. Treatment Response

Different regimens targeting at breast cancer have been well
proposed for patients with pertinence based on the specific
subtype of tumor, anatomic cancer stage, personal preferences
and toxicity risk etc. [241]. Assessing treatment response is
of significance for monitoring the progression of cancer and
therapeutic effects, which could help implement further clinical
decisions and improve patients’ outcomes with personalized
treatment plans.

Most of the studies focus on Neoadjuvant Chemotherapy
(NAC) [242] response prediction. Neoadjuvant treatment, or
preoperative treatment, has become a safe and often effective
therapeutic choice for larger primary and locally advanced
breast cancer [243], and NAC is one of the most mainstream
chemotherapies presently [242]. Apart from the imaging modal-
ities we introduced before, Computed Tomography (CT) [244],
[245] is also studied for treatment response prediction.

Classification: A qualitative metric to assess NAC is whether
the patients achieve pathological complete response (pCR) or
not [246], which is demonstrated as an indication of a high
disease-free survival rate based on the absence of cancer cells
combined with the involvement of lymph nodes after treatment
course [247], [248]. Therefore, a binary classification problem is
formulated to identify the pCR and non-pCR of NAC treatment,
which could help physicians determine further therapeutic plans.

Directly applying CNNs models [244], [249], [250], [251]
for classification of NAC response is one of the most common
and straightforward strategies. Moreover, replacing the last fully

connected layers of CNN models with other robust conven-
tional classifiers such as Random Forest or Support Vector
Machine [252], [253], [254] also attracts a lot of attention. The
CNN modules are considered feature extractors providing image
representations, which are often combined with other hand-
crafted features or clinical information for training conventional
classifiers at last. Non-imaging data sources such as pathological
records as supplementary to imaging representations could pro-
vide more comprehensive information for better performance.
Modified and improved network architectures could also achieve
NAC response performance. Taleghamar et al. [255] concate-
nated features from two branches consisting of modified ResNet
and modified residual attention network and output classification
with a fully connected network. Qi et al. [245] proposed a
modified 3D MultiResUnet with Gradient-weighted class Ac-
tivation Map (Grad-CAM) which could mark the interesting
regions during the training process, and show its improvements
compared with conventional radiomics analysis.

The multimodal data has also sparked an in-depth exploration
of the research on combining with multimodal learning. Joo
et al. [256] took multi-parametric MRI as inputs such as T1
weighted, T2 weighted, and clinical information in parallel and
concatenated features at last. In addition, clinical information,
molecular information, kinetic information, etc., could also be
fused into DL frameworks based on multi-stage fusion strate-
gies [253], [254], [257], [258]. Notably, some studies [253],
[258] fused the molecular types information which has been
known as having a correlation with NAC response results with
imaging features based on CNN models. Also, the handcrafted
features extracted based on pathological knowledge with con-
ventional algorithms such as histograms [245], [254] were also
incorporated and fused into the image-based deep learning
frameworks.

Unlike the diagnostic tasks which mostly take one-phase
examinations, a large part of source data for predicting treat-
ment utilizes multiple-phase scans across cycles of treatments.
Researchers attempt to highlight such temporal information
and differences before and after treatment. Methods of inde-
pendently inputting images of different stages gained many
explorations [259], [260]. For example, Xie et al. [259] proposed
a framework of dual-branch CNN-based models with inputs of
images extracting before and after NAC treatments, and then im-
plemented feature fusions from convolutional blocks. Similarly,
Tong et al. [260] proposed dual-branch transformers for NAC
response prediction on US images. Siamese architectures-based
CNNs [261], [262] were also explored to capture the differences
between images before and after treatment cycles. In addition,
Recurrent Neural Networks (RNN) were used for capturing
the information across temporal dimensions and achieved bet-
ter prediction outcomes on long-term sequential treatment cy-
cles [263]. For multiple cycles of NAC treatments, Gu et al. [264]
constructed a deep learning pipeline for step-wise prediction
of different stages of treatments. A comparison study of breast
DCE-MRI contrast time points for predicting NAC response has
been reported by Huynh et al. [265].

Transfer learning decreases the need for a large amount of
new data and speeds up the training process on similar tasks.
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Some [253] utilized pre-trained networks as feature extractors
for subsequent classification. Byra et al. [262] fine-tuned the
Inception-ResNet-V2 CNN based on the benign and malignant
classification tasks and took Siamese architecture for receiving
images before and after NAC. Multi-task learning simultane-
ously implementing [261], [266] segmentation and treatment
response prediction also attracts great attention. Liu et al. [261]
proposed a Siamese multi-task network (SMTN) consisting of
segmentation sub-networks and pCR predication sub-networks.
Wau et al. [266] constructed three image signatures based on fea-
tures extracted from segmentation networks for tumor segmen-
tation of three treatment phases, and then the image signatures
were integrated with clinical factors for pCR prediction.

Other Tasks: 1dentifying and classifying the biomarkers or in-
dicators that represent the effect of treatment also play important
roles in clinical practice. Aghaei et al. [257] computed kinetic
image features and implemented classification of response to
chemotherapy based on different fusion combinations of the
features with ANN models, and then selected clinical markers
according to feature analysis. For more specific assessment,
some [267] developed Stroma-derived bio-marker and then ob-
tained new clinical markers based on CNNs from histological
images.

C. Prognosis

Prognosis aims to evaluate the likely outcome or course
of a disease. We categorize the applications in this field into
classification and other tasks.

1) Classification: Survival prediction: Apart from methods
using a single modality, Liu et al. [268] additionally combined
multiple modalities including clinical information (such as sex,
age and cancer stage), multi-scale WSIs, as well as the tumor,
lymphocyte, and nuclear segmentation results for survival pre-
diction via a MobileNetv2 [269]. Wang et al. [270] combined
WSI and genomic features for survival prediction using a bi-
linear neural network.

Recurrence prediction: Liu et al. [271] used a 3D CNN to
predict breast cancer recurrence after 5 years as well as the
HER?2 status based on DCE-MRI. Using the immunofluores-
cence images of CD8+ T lymphocytes and cancer cells, Yu
et al. [272] used “deepflow” from MXNet [273] for relapse
prediction for patients with triple-negative breast cancer. Ha
et al. [274] proposed to use CNN to predict the Oncotype Dx
recurrence score based on MRI images to provide an alternative
to the invasive and expensive genetic analysis of Oncotype Dx
could be avoided. Ma et al. [275] identified the bio-markers
indicating recurrence for TNBC patients with NAC treatments
based on radiomics analysis in segmented images by the 3D
pre-trained U-nets.

In addition to single-modality methods, multi-modal methods
have also been explored in this task. Kim et al. [276] first
identified 32 features related to breast cancer recurrence and
developed a recurrent neural network to predict the recurrence
time. To predict the recurrence and metastasis of HER?2 positive
breast cancer in patients, Yang et al. [277] proposed to use
CNN to extract feature from WSI and combine it with clinical

information via a multi-modal model. Rabinovici et al. [278]
utilized the ensemble strategy on the prediction scores on parallel
CNN-based models for different MRI modalities and clinical
classifiers. To predict the recurrence risk of early-stage breast
cancer, Nichols et al. [279] used an artificial neural network to
combine pathological, clinical, and imaging variables. Specifi-
cally, the global mammographic breast density and local breast
density (LBD) are used, and LBD was measured with optical
spectral imaging capable of sensing regional concentrations of
tissue constituents. This method demonstrated high correlation
of risk prediction with Oncotype Dx recurrence score. Whitney
et al. [280] used nuclear morphology features from hematoxylin
and eosin (H&E) stained images to predict risks derived by the
Oncotype DX test. After feature selection, the performance of
multiple machine learning methods and a deep neural network
are compared.

2) Other Task: The main purpose aside from prognosis pre-
diction is the discovery of prognostic biomarkers and explore the
interactions between various prgnostic factors.

One line of studies uses a neural network as the first step
to detect important features. Bai et al. [281] applied a neural
network for the detection of tumor cells, immune cells, fibroblast
cells, and others. In the end, five machine tumor-infiltrating
lymphocyte variables were derived based on features. These
variables were found to be independent and robust prognostic
indicators.

Another line of research uses neural networks to associate
features. Balkenhol et al. [282] tried to assess the tumour in-
filtrating lymphocytes (TILs). A CNN was applied to register
unmixed multispectral images and corresponding H&E sections.
It was found that for all TILs markers, the presence of a high
density of positive cells correlated with improved survival. None
of the TILs markers was superior to the others. Using the graph
neural network (GNN), Qiu et al. [283] proposed to tape the
regional interactions among existing biomarkers (tumor size,
nodal status, histologic grade, molecular subtype, etc.) to reveal
hidden prognostic values. Differently, Lee et al. [284] used a
GNN to explore contextual features in gigapixel-sized WSIs in
a semi-supervised manner to provide interpretable prognostic
biomarkers.

Recently, Zuo et al. [285] combined the WSI data and genomic
data to assess the prognostic outcome. This work fused the
interaction between WSI and genomic features via the atten-
tion mechanism which enabled the identification of survival-
associated imaging and genomic biomarkers strongly correlated
with the interaction between TILs and tumors.

D. Discussion

With the increasing accuracy achieved by deep learning mod-
els, more and more studies reported methods that had high per-
formances that are even comparable with radiologists under lim-
ited data in mammogram [108], Ultrasound [133], MRI [286],
and pathology images [192]. Growing numbers of studies are
seeking extra clinical applications based on DL.

For mammograms, owing to the large-scale data and the need
for population-level screening, more and more FDA-cleared or
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approved DL products are available on the market, such as Lunit
INSIGHT MMG, Transpara, MammoScreen 2.0, etc. Several
DL algorithms and products could take multi-view inputs and
conduct accurate cancer classification and lesion detection at
the same time. There are increasing efforts to predict risks from
even normal mammograms [287], [288], [289], which would
potentially increase the screening efficacy and effectiveness. We
also noticed that a recent prospective study [290] based on Mia
(version 2.0, Kheiron Medical Technologies) showed that using
Al as an additional reader can improve the early detection of
breast cancer with relevant prognostic features, with minimal
to no unnecessary recalls. Compared with mammograms, ul-
trasound is more effective in screening for women with dense
breasts (which has a high proportion in China) and is more often
used for lymph node metastasis estimation and risk prediction.
Despite the prosperity of the studies on breast ultrasound, there
is a lack of mature DL products that can be used in clinics. Also,
the scale of public breast ultrasound data is far less than that of
mammograms.

Breast MRI is often used preoperatively for treatment plan-
ning, which plays a lesser role in cancer screening than mam-
mogram and breast ultrasound. This is partially the reason why
many of the public breast MRI datasets are aimed at treatment re-
sponse or prognosis predictions, and studies did show that MRI is
effective in outcome prediction [258], [291]. In addition, current
studies also showed that breast MRI could be used to reduce false
positives [286] and potentially used in screening [170], [292],
[293]. Further, it is also of great interest whether the examination
process could be more efficient with less time and contrastive
agent [178], [190].

DL has demonstrated the capability of analyzing pathology
images in various clinical tasks, such as molecular subtyping,
mitosis detection, metastasis detection, fine-grained cancer clas-
sification, virtual staining, outcome prediction, etc. Recent stud-
ies are also seeking effective algorithms that can automatically
grade the cancers [294], [295] according to the well-established
prognostic factor, Nottingham histological grade (NHG). A
recent promising study by Amgad et al. [296] showed a DL-
based population-level digital histologic biomarker consistently
outperformed pathologists (usually use NHG) in predicting sur-
vival outcomes, independent of tumor—node—metastasis stage
and pertinent variables. Besides, it’s also quite appealing to find
the association between imaging features of pathology images
and the genetic information [297].

Outcome prediction, i.e., treatment response prediction and
prognosis prediction, is trending in the field of deep learning-
based breast cancer analysis. It usually requires clinicians to
summarize a diverse range of different clinical factors and their
sophisticated interconnections to predict the future outcome of
the patients. Owing to their remarkable capability of learning
patterns from complex high-dimensional data, DL-based breast
cancer imaging also shows promise in outcome prediction by
providing a non-invasive alternative to conventional analysis.
We found not only an increase of studies in this direction but
also the practical values demonstrated by DL techniques whose
results could further help clinicians make personalized treatment
plans and facilitate the discovery of potential biomarkers [296].

To summarize this section, we witnessed the growing scale of
research on using deep learning for breast cancer image analysis
and the increasing feasibility of DL in assisting real-world clini-
cal applications. In the next section, we will delve into details on
the challenges and future directions of DL-based breast cancer
imaging from a methodological perspective.

IV. CHALLENGES AND FUTURE DIRECTIONS
A. Robust Learning With Limited Data

Large-scale training data is the key to the success of deep
learning. There were some efforts to make larger-scale data
accessible for research purposes [298], [299]. However, most
of the available public datasets are of relatively small scales, es-
pecially the modalities other than mammograms as those are not
routine exams (please find our summary of the publicly available
datasets in the appendix). This is a potential factor that hinders
the robustness and generalizability of deep learning-based breast
cancer analysis models. A plausible direction to enlarge the
training data while protecting patients’ privacy is federated
learning (FL) with the collaboration of multiple institutes. FL
allows jointly training deep learning models without sharing data
among participants, which enables cooperation across clients
while also preserving the patient’s privacy. Synthetic data is
another potential option, and a recent pioneer work provided
2,000 synthetic pathology images for nuclei segmentation stud-
ies [300].

Another challenge naturally inherited from limited training
data is the limited generalization ability of the developed model,
such as the results reported by Wang et al. [116]. Novel algo-
rithms that can improve the robustness of deep learning models
on unseen domains (such as domain adaptation and domain
generalization) would be of interest in the field of breast cancer
analysis [301], [302]. Existing approaches are majorly based
on learning invariant representations from multi-source data. A
recent study also found that fine-grained annotations could im-
prove a model’s generalizability without involving training data
from multiple sources [303]. It is worth mentioning that domain
gaps generally exist under FL scenarios as well, where the data
provided by each client are naturally heterogeneous. In addition,
robustness to adversarial attack is also in a need to protect the
medical analysis systems from potential threats [119], [304].

With the development of medical imaging techniques, novel
imaging data would also emerge. Compared with the widely
and maturely studied modalities, the new modalities would need
further adaptation of current deep learning algorithms. Transfer
learning and domain adaptation hold promises in addressing this
challenge, and a typical example is the studies that made efforts
to transfer the models learned from mammograms to DBT [305].

B. Efficient Learning With Weak Labels

Apart from data, label is another important factor that drives
the thriving of deep learning models, and supervised learning is
the most common form of deep learning [27]. For breast cancer
imaging, labels are often obtained in two ways: determined
by radiologists’ interpretation of the radiology images (e.g.,
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BI-RADS 2 as normal, 3 as benign, 4—6 as malignant); or deter-
mined by pathological results based on biopsy or surgery, which
is also the “gold standard” for cancer identification. However, the
former strategy inevitably involves inter-reader variation, while
the latter is invasive and may not always be available. Moreover,
annotating medical images is labor-exhaustive and expertise-
depending, and hence annotations are scarce, especially fine-
grained annotations like bounding boxes or segmentation masks.
The medical image annotations often cannot meet the require-
ment of quantity and quality, and efforts have been made to
develop label-efficient learning models to leverage more avail-
able data [306], [307]. Recent studies proposed omni-supervised
learning to utilize different types of annotations for training a
unified network [308], [309], which could potentially serve as a
unified solution to label scarcity. Considering the inter-reader
variation, a potential solution is developing models that are
robust to noisy labels or using the calibration of multiple-reader
results [310], [311]. Self-supervised learning could largely mit-
igate the need for experts’ annotations, which would also be
a promising solution to label scarcity. Self-supervised learn-
ing pre-trains a network with only unlabeled data has shown
remarkable results (e.g., surpassing the performance of Ima-
geNet pre-trained networks) [312], [313]. Moreover, free-text
report can also benefit self-supervised learning, especially in
label-efficient finetuning for downstream tasks [314]. It is also
worth noting that self-supervised learning may require a large
amount of data, which is entangled with the challenge of limited
data.

C. Multimodal Learning for Information Fusion

In this paper, we have surveyed a number of studies with
multimodal learning, and most of them involve only one type
of imaging data (e.g., multiple views of mammogram; B-mode
ultrasound and color Doppler; different sequences of MRI).
However, different imaging techniques provide various insights
into the status of breast cancer patients, while current studies
have not yet fully utilized the rich context provided by all
different modalities generated during the clinical process. For
example, mammograms are more sensitive to calcifications than
ultrasounds, MRI provides more detailed spatial information,
and pathology images enable observing the microscopic en-
vironment and the cell status. Also, data beyond the images,
such as clinical information, molecular biomarkers, genomics,
or clinical reports, could further enrich the descriptions for
the patients with more structured knowledge and are proved
beneficial for developing multimodal learning models [277],
[283]. For prognosis prediction, multimodal learning is also
essential to improve the accuracy, explore the interconnections
among the information from different modalities, and facilitate
novel biomarkers [283], [315], [316]. Moreover, interconnec-
tions among the multimodal data could be further explored.
For instance, the study by Coudray et al. [317] showed that
genes could be predicted from pathology images. The discov-
ery of such associations could narrow down the search space
of biomarkers for clinical analysis and possibly provide non-
invasive alternatives to biopsy or serology tests as well.

We can witness a trend of increase in multimodal breast cancer
papers, and this line of study is yet to be further explored in
the near future. The key factor that hinders this line of work
is the difficulty in constructing a dataset where many different
modalities such as gene, age, images, therapy, clinical record,
etc., for each patient are complete and collected appropriately.
As a result, future multimodal studies may also pay attention
to the problem of missing modalities when the provided data
are incomplete [318]. We look forward to an open-source multi-
modal breast cancer dataset to stimulate the development of this
direction.

D. Reliable and Explainable Model Learning

For breast cancer, factors such as age and race have long been
important factors that affect healthcare disparity [319], and one
of the reasons is that these factors are highly related to breast
density which is often evaluated for breast cancer diagnosis.
The statistics by Giaquinto et al. [2] also showed that Black
women have the lowest survival for every stage of breast cancer
diagnosis except for stage I for which survival is similar. Deep
learning, unfortunately, inherits unreliable and unfair diagnoses,
especially for under-represented groups [320]. Recent studies
also found that most of the data supporting approval of Al prod-
ucts by The United States Food and Drug Administration (FDA)
did not report the race or ethnicity of the patients [321]. As are-
sult, fair deep learning has raised a lot of attention [322]. Another
problem raised by group imbalance is shortcut learning [323],
which refers to the phenomenon when DL models learn wrong
patterns for making decisions due to spurious correlations. One
of the key reasons for shortcut learning is that the dataset is not
diverse enough and the minority group(s) are under-represented
and under-learned. Shortcut learning is also one of the reasons
that DL. models perform inconsistently on the training data and
external testing data. Broadly, three types of algorithms could
be explored for fair and debias model learning: pre-processing,
in-processing, and post-processing, which focus on fair data
stratification, fair model development, and fair modification of
a trained model’s output, respectively. Most existing solutions
often rely on exhaustive labeling of group information, while a
recent study has proposed methods without knowing the group
information [324], which is more feasible when the patients’
information is protected.

Explainability is another important factor in achieving reliable
and fair deep learning models. A large proportion of previous
works focused on post hoc methods to interpret an already
trained model and help the users, i.e., doctors and patients, to
understand the decision-making process of the Al models. A
typical example is using saliency maps, such as CAM, to explain
which part of an image contributes most to the final prediction.
Global interpretation (e.g., by Shapley Value) that summarizes
the holistic decision-making rules based on the whole cohort
could also help understand the learned knowledge of the mod-
els. Recently, developing ante hoc algorithms that embed the
reasoning process into DL. models has gained more attention. For
example, Wang et al. [122] proposed a prototype-based model
which conducts classification by comparing input images with
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learned prototypes. Learning and reasoning based on attributes
related to diseases is also a promising approach but may require
additional information for labeling the attributes [325], [326].
These methods could not fully explain the DL models but have
contributed to opening the “black box” to a certain level.

E. Personalized Treatment Planning

Optimal therapy for each patient depends on tumor sub-
type (e.g., HER2 negative, HER2 positive, and triple-negative),
anatomic cancer stage, and patient preference [241]. Personal-
ized treatment planning for breast cancer could largely improve
patients’ life quality by advancing the treatment for patients with
good responses and avoiding over-treatment for patients with
poor responses. In this survey, we have observed an increase in
studies on breast imaging-based treatment response prediction
and prognosis, of which a considerable proportion utilized a
single modality of breast imaging. Considering the rich context
provided by the multimodal information generated during the di-
agnosis process, it is of great importance to develop multimodal
learning algorithms to combine imaging information, medical
history, and genetic profile individualized treatment planning.
Meanwhile, facilitating precise biomarkers is another crucial
direction, which enables identifying patients who will benefit
from either escalated or de-escalated treatment [327]. There
were works on constructing new biomarkers based on H&E
pathology images [267], [296], [328], and we look forward to
more effective novel biomarkers in the future.

F. Accountable Al Evaluation and Regulation

With the increasing performance of Al techniques, there are
rising calls to establish the accountability standard of deep
learning to improve the evidence of its usefulness and fully
unleash its huge potential in healthcare. Currently, many works
that reported high performance of DL-based medical image
analysis are retrospective studies conducted on limited datasets.
Future studies should also rethink the evaluation design to
improve the strength of evidence for the developed Al systems.
For example, external validation is now required for reporting
Al performance in radiology studies [329]. The U.K. National
Screening Committee further suggested that prospective studies
should be required to provide further assessment of Al systems in
breast screening pathway, as enriched, multi-reader, multi-case,
test laboratory studies are also biased [330]. Generalizability and
robustness of the Al decision support tools should be thoroughly
evaluated before adoption for patient care in the clinic [331],
and we’ve seen some efforts on developing DL systems with
more diverse data [332], [333]. Apart from diverse and more
transparent evaluation of the developed systems, involving hu-
man experts’ intervention could also possibly achieve trustable
Al. Human-in-the-loop is a promising approach where doctors
can participate in the training of deep learning algorithms by
providing the knowledge on the labels or attributes in a medical
image to rectify the models’ decision-making process [326].

Further, accountability requires stronger and clearer regula-
tion of Al systems. Al-based software is also emerging with the
increasing studies on Al-based breast cancer analysis, and the

FDA has approved several Al software indicated for breast can-
cer image diagnosis. However, a recent review of FDA-approved
or FDA-cleared Al software for breast cancer also reported im-
portant gaps in validation approaches, based on which the FDA
evidentiary regulatory was suggested to be strengthened [321].
The efforts by clinicians, researchers, engineers, ethicists, and
the government are needed to collectively ground the Al tech-
nology in breast cancer analysis.

V. CONCLUSION

Breast cancer has become the most diagnosed malignancy
worldwide, and breast imaging plays a significant role in breast
cancer screening, diagnosis, treatment response prediction, and
prognosis. With the ground-breaking development of deep learn-
ing research, emerging studies have been conducted to apply
deep learning techniques to tackle breast cancer. To this end,
we conducted this survey to review the deep learning-based
breast cancer imaging analysis over the past decade. Specifically,
screening and diagnosis has attracted most of the attention from
the deep learning community, while the increase of studies
for treatment response prediction and prognosis has also been
observed. The findings of this paper suggest that these studies
are largely determined by the available data, especially those re-
leased to the public. By discussing the challenges and exploring
the potential future directions, we hope to provide novel insights
to inspire readers to devote further efforts on developing the
next-generation trustworthy healthcare models for breast cancer
as well as other diseases.
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